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On the First Positive Zero of P(-I/2(cos 0), 

Considered as a Function of 

By R. D. Low 

1. Introduction. Several years ago Pal [1], [2] published two papers in which 
he considered the roots of the equations P,(m)(1() = 0 and (dcd,u) P,(m)(,4) = 0 re- 
garded as equations in v. t In these equations mn is an integer and , = cos 0. Among 
the roots which Pal computed and tabulated are those of the equation 
P^(2)(cos 0) = 0 for 0 = 7r/12, 7r/6, and 7r/4, and he lists as the first root in each 
case: 4.77, 2.26, and 1.52. In view of the fact that P'(2) (cos 0) = v(v + 2) (V2 _ 1). 
pj(-2) (cos 0), it must be assumed that the numbers just mentioned are respectively 
the first positive roots of the equation p (-2)(cos 0) = 0 for 0 = ir/12, 7r/6, and 7r/4, 
since the equation p'(2) (cos 0) = 0 has the roots -2, - 1, 0, and 1 regardless of the 
value of 0. In any event it will be seen that the numbers 4.77, 2.26, and 1.52 are not 
roots at all in as much as they are less than the first element of a sequence of lower 
bounds to be exhibited below. 

2. A Sequence of Lower Bounds. We restrict our attentioii to the function 
P-1/2(cos 0) in which m = 1, 2, 3, ... because of the identity [3] 

P(m)2(coS 0) = (-I)m(2 - 1)(V2 9) ... [V - (2r_ - 1)2j4]Pv-1?2(cos 6), 

which shows that the zeros of Pm)/2(cos 0) consist of (in, =t, * , ?tm - 

together with those of P 1I/2 (cos 0) . It is known that P(iIlj ( cos 0), considered as a 
function of the complex variable v, has infinitely many zeros which are all real and 
simple. Moreover, since P(_i?) (cos 0) is an even function of v which does not vanish 
for v = 0, only its positive zeros need be considered. Hence the purpose of the present 
investigation is to establish a sequence of lower bounds for the first positive zero of 
P1/2 (cos 6). In addition to the properties mentioned already, it is also known that 
Pv2/)2(cos 0) is an entire function of order unity. Hence if Vn,m(O) denotes its nth 
positive zero, P(-m)7(cos 0) can be expressed as an infinite product of the form 

Received August 9, 1965. 
t A trivial change in notation has been made; Pal uses n instead of P. 
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(0 ,2 

( 1 ) I~?P-1 /2 (Cos PL17/2) (COs 0) II 1 - 2 

On the other hand we may also write [3, p. 60] 

(2) P(ITj2(Cos 6) = tan 2F6 2 ? v, 4 -v; m ? 1; sin2 6/2), 

and by combining (1) and (2), we obtain 
- v2 | 2F1( + v, ; m + 1; sin20/2) 

n=1 ' n i,(6)f 2F1(!, 4; m + 1; sin20/2) 

If we set r = sin2 0/2 it is not difficult to show that the right side of (3) can be 
written in the form 

00 

(4) Z al (0)V21, 
1=0 

where 
v0 

b ,kv 
k 

(5) k-Ia,() k=1 (m + 1)k k! alm0 
2FjQ, 1; m + 1; P 

and the bl,k are such that 
k 

21 
(6) (2 + V)k(2 - )= bl,kp, beo, = 1. 

1=0 

Next if we denote the left side of (3) byf(v2), take the logarithmic derivative (with 
respect to v2), multiply the result by f(i2), differentiate 1 - 1 times, set v = 0, and 
realize that f1) (0) = 1!alm,, we find 

(7) E Spm(0)aj-p,m(0) = -laz,m(6), 1 = 1, 2, 3, **, 
p=1 

where 
00 

(8) Sp,m(o) = EVn,m6) 
n=1 

The desired sequence of lower bounds for v1m(6) follows directly from (7) and (8). 
Indeed from (8) we have v-1MP(0) < Sp,m(6), and if we denote [Sp,m(6) ]-12P by 
Xmp) (0), then 

(9) Vl,m(0) > 2~(6),m p = 1, 2, 3, . 

It is a simple matter to solve (7) for the S's and we then find for the first three X's: 

X\m =1 [-al, m] 
12 

x (2) 2 - 
2a2m]1/4 

Xm(3) = [-al,m + 3a,,ma2,m - 3a3,m]1/6 

It is thus evident that the elements of the sequence {X,m(p)(()} depend upon the 
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al,m and these coefficients in turn depend upon the bl, k according to (5). From (6) 
it is obvious that bC,k [() ]2 = 12 32 . . . (2k- I)2/4k, and by straightforward 
calculations we find 

bl,k = -4H1,kbojk 

b2,k = 8 (H ,k - H2,k)bo,k, 

b3,k - 332-(H,k - 3H1,kH2,k + 2H3,k)bO,k 

where 
k 

Hp,k= ZE(2n-1)-2p, p-=1 2, 3, 
n=l 

3. Some Numerical Results and Comments. In this section we record, in the 
table below, the results of some computations performed on a desk calculator in the 
case m = 2. This value of m has been chosen: (i) to illustrate the procedure outlined 
in the previous section, and (ii) to point out the discrepancy mentioned in the intro- 
duction regarding the first roots of the equation p, (2) (COS 0) 0= as calculated by 
Pal. Only the elements X2 (1)(0) and X2 (2)(0) of the sequence m(p) (0)} have been 
calculated primarily because of the problem of significant figures for larger values of 
p. Also the element X2'1) (0) is already sufficient to bring out the erroneous nature of 
the "first roots" mentioned above. 

0 Pal X2 (o) X(2) (0) V12) (0) 

r/12 5.27 13.24 18.76 19.79 
i/6 2.76 6.64 9.42 9.96 
i/4 2.02 4.45 6.32 6.70 
i/3 3.36 4.79 5.08 

5r/12 2.71 3.98 4.13 
r/2 2.29 3.31 3.50 

In the column headed "Pal", the entries are Pal's first roots corrected by the additive 
factor 2 which is necessary because in his equation the degree of the Legendre func- 
tion is v rather than v- 2. With the exception of vl,2(7r/2) = 3.50, which is an 
exact value, the entries in the column headed v12 (6) are the values of V1,2(0) as com- 
puted from the first two terms in the asymptotic expansion 

~m(O) = (n _ 
? ) - +1 in 7r + (4m - 1) cot 0 + 

-2) 
4 2 0 0[l +(n - 1/4 + m/2)ir/0]? () 

which was derived from [3, p. 71]. 
Although no claim is made to the effect that the sequence Xm(P) (0) even con- 

verges, let alone that it converges to the true value of V1,2(6); the above table sug- 
gests that this may be the case at least for m = 2. Along these lines it is perhaps 
worth mentioning, for example, that the function cos 7rv, like P(im (cos 0), is: even 
in v, entire of order unity, and has infinitely many zeros which are all real and simple. 
For cos 7rv the coefficients, analogous to the aj,m(6) in (4), are (-1) 17r2l/(21)!, and 
with considerably less effort than was required in the case of the Legendre function 
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onie fincds X'( = 0.45016, X(2) = 0.498187, X - 0.49988, etc. The convergeiice of the 
sequence {X(P); to the true value v, = - is strongly suggested. 
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Some Integrals of Ramanujan and Related 
Contour Integrals* 

By Van E. Wood 

1. Introduction. The initegrals 
(0+) 

Ik (t) = (2ri) f 
eztz1-l(ln Z)k dz, Re t > O, 

occur in the asymptotic expanisions of the solutionis of heat conductioni problems in 
regions bounded iinternally by a circular cylinder [1], in problems oIn the flow of 
fluids through porous media [2], in electron slowing-dowin problems [3], and else- 
where. It should be recognized that these integrals are not in general the inverse 
Laplace transforms of zn-1(ln Z)k, since the contour does not surround the singularity 
occurrinig at z = 1 when k < 0. We will consider only cases where t is real and n 

and k are integers. For k nonnegative, the integrals can be expressed in terms of 
polygamma functions [2]. For nonnegative n and negative k, they can be expressed, 
by means of change of variables and integrations by parts, in terms of derivatives of 
Ramanujan's integral [4], 

00 

IR(t) = f -txx- (72 + hi2 x) -1 dx. 

This function is in turn related to the n-functioins of Volterra and others [5, 6], 
which are useful in the solution of certain integral equations. In this paper, we discuss 
properties and numerical values of Ramanujan's integral, its derivatives, and the 
related contour integrals. 

2. Relation to Other Integrals. Using the recurrence relations 

(la) dIk(t) Idt = n 

Received October 6, 1965. 
* This work was supported in part by the U. S. Air Force Office of Scientific Research Grant 
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